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Abstract 

Molten salts are a unique type of electrolyte enabling high-temperature electrochemical energy 

storage (EES) with unmatched reversible electrode kinetics and high ion-conductivities, and hence 

impressive storage capacity and power capability. However, their high tendency to evaporate and 

flow at high temperatures challenges the design and fabrication of the respective EES devices in 

terms of manufacturing cost and cycling durability. On the other hand, most of these EES devices 

require lithium-containing molten salts as the electrolyte to enhance performances, which not only 

increases the cost but also demands a share of the already limited lithium resources. Here we 

report a novel quasi-solid-state (QSS) electrolyte, consisting of the molten eutectic mixture of 

Na2CO3-K2CO3 and nanoparticles of yttrium stabilized zirconia (YSZ) in a mass ratio of 1:1. The 

QSS electrolyte has relatively lower volatility in comparison with the pristine molten 

Na2CO3-K2CO3 eutectic, and therefore significantly suppresses the evaporation of molten salts, 

thanks to a strong interaction at the interface between molten salt and YSZ nanoparticles at high 

temperatures. The QSS electrolyte was used to construct an iron-air battery that performed 

excellently in charge-discharge cycling with high columbic and energy efficiencies. We also 

propose and confirm a redox mechanism at the three-phase interlines in the negative electrode. 

These findings can help establish a simpler and more efficient approach to designing low-cost and 

high-performance molten salt metal-air batteries with high stability and safety. 

 

Keywords: molten salt iron-air battery, quasi-solid-state electrolyte, Na2CO3-K2CO3 eutectic, 

yttrium stabilized zirconia nanoparticles, three-phase interline. 
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Rechargeable molten salt batteries (MSBs) are a type of advanced high temperature 

electrochemical energy storage (EES) devices.[1-5] They are featured by ultra-high energy 

capacity and power capability, and outstanding durability and safety, and have the great potential 

for future large-scale utilization of clean and renewable energy to meet the growing global 

demand for sustainable energy supply.[6-9] Low-cost and inflammable inorganic molten salts are 

commonly utilized as the electrolytes in MSBs, for example, liquid metal batteries (LMBs) and 

molten air batteries (MABs).[10-17] The high working temperatures of molten salts are 

responsible for their extraordinarily high ion conductivity, and desirably fast kinetic and transport 

properties.[18-22] However, inorganic molten salts also possess adverse characteristics. At 

sufficiently high temperatures, molten salts can be aggressively corrosive[23,24] readily volatile 

and flowable,[25] which are disadvantageous to battery design as well as safety and stability. It is 

an urgent demand on electrolyte design, tuning these characteristics for better battery 

performance. 

 

Quasi-solidification is an effective strategy of electrolyte design to overcome the disadvantages of 

electrolyte leakage and volatilization in room-temperature batteries with liquid electrolytes. The 

well-designed quasi-solid-state (QSS) electrolyte performs high ionic conductivity and 

electrochemical stability, low combustibility as well as high mechanical strength, thus have been 

extensively exploited in advanced lithium-based and sodium-based batteries.[26-31] Among these 

QSS electrolytes, ceramic nanopowders have been successfully utilized as the auxiliary filler for 

the enhancement of mechanical strength and ion conductivity.[31,32] Herein, we present a new 

class of high-temperature QSS molten salt electrolyte based on nanosized solid oxide fillers as a 

new MSB-customized multifunctional electrolyte beyond conventional molten salt electrolytes. As 

a proof-of-concept of the high-temperature QSS electrolyte, its potential application to 

rechargeable high-temperature molten salt iron-oxygen batteries (MIBs) is explored with 

particular attention to the volatility and flowability of molten electrolyte. So far, to the best of our 

knowledge, this is the first report on QSS molten electrolyte for high-temperature MSBs. 

 

As representative molten electrolytes, alkali carbonates and their eutectics have been used in MIBs 

because they can deliver not only high oxide ion conductivities in a wide temperature range, but 

also favorable electrochemical potential windows to match iron redox reactions.[11,12,14,17] 

However, these molten carbonates are volatile at high temperatures, causing electrolyte loss, 

whilst their easy flowability increases the risk of leakage and also restricts the operation flexibility 

of the battery. In order to reduce their volatility and flowability, molten salts can be mixed with the 

powder of an appropriate oxide. It was thought that at sufficiently high contents (e.g. beyond the 

peculation content), the powder particles could form a flexibly connected network to physically 

restrict convection (flow) and evaporation of the molten salts. This approach might however 

sacrifice some ionic conductivity of the molten salts, but such a loss can be compensated by using 

the powder of a solid ion conductor. In this work, nanoparticles of the solid oxide ion conductor, 

yttrium stabilized zirconia (YSZ), were mixed with the eutectic mixture of Na2CO3 and K2CO3 

(NaK, with the calculated viscosity value of 5.0910-4 cP, Fig. S1). It was found that at a mass 

ratio of 1:1, the YSZ-NaK mixture reached a paste-like quasi-solid state when the applied 

temperature was above the melting temperature of the eutectic (ca. 703 ℃). This phenomenon is 

considered to have resulted from the YSZ nanoparticles interacting strongly at their interfaces with 
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the molten carbonate salts, further suppressing the volatility and flowability of the latter. 

 

This novel QSS electrolyte facilitated the design and construction of a simple and effective high 

temperature rechargeable iron-air battery that was tested successfully in terms of key performance 

parameters, namely storage capacity, power capability, cyclic charge-discharge stability and 

energy efficiency, and materials and manufacturing affordability. In addition, redox reactions 

responsible for charging and discharging the negative electrode were revealed to proceed at, and 

via the propagation of the metal-oxide-molten salt three phase interlines (3PI). These findings 

should form the basis for the establishment of a generic design of molten salt electrolytes to 

restrain their flow and volatile characteristics in high-temperature EES device. 

 

In this work, firstly, we designed and constructed a laboratory MIB with an YSZ supported silver 

positive electrode, a hematite (Fe2O3) coated silver negative electrode, and the QSS electrolyte 

consisting of the molten NaK eutectic and YSZ nanoparticles, as schematically depicted in Fig. 1. 

The YSZ nanoparticles had a diameter ranging from 40 to 400 nm (Fig. S2). Fig. S3 shows the 

wetting angle between YSZ sheet and molten NaK is ~30°. At a mass ratio 1:1, the NaK-YSZ 

mixture was nonflowing but could be extruded to certain shapes at temperatures above the melting 

point of the NaK eutectic (Fig. S4). The photographs of NaK-YSZ mixtures with different mass 

ratios at 800 ℃ (vertical view) and room temperature (vertical and side view) are shown in Fig. S5. 

The electrochemical impedance spectra (EIS) in Fig. S6 demonstrate that the conductivity of QSS 

electrolyte was ~0.22 S/cm, a little lower than that of molten NaK electrolyte (~0.42 S/cm). 

 

Fig. 2 presents the microstructure of the solidified QSS electrolyte characterized by transmission 

electron microscopy (TEM) and energy dispersive spectrometer (EDS) mapping analysis after a 

high-temperature treatment at 800 ℃. The TEM image of smashed QSS electrolyte in Fig. 2b 

reveals the formation of a core-shell structure between molten NaK and YSZ nanoparticles, with 

the measured average shell thickness of less than 10 nm. The magnified TEM image with the EDS 

analysis of an overlay of the obtained elemental mapping in Fig. 2e-h confirms the composition of 

the core-shell structure and also shows YSZ nanoparticles being encapsulated by the NaK eutectic. 

Moreover, further magnified high-resolution TEM images present clearly the interface between a 

highly crystalline YSZ nanoparticle and the layer of amorphous binary eutectic NaK, indicating 

the strong interaction between YSZ nanoparticles and the NaK eutectic (Fig. 2b-d). 

 

To investigate the volatility of the QSS electrolyte, thermogravimetry (TG) analysis was applied 

with a dynamic heating mode and a successive constant temperature mode. As shown in Fig. 3a, 

YSZ nanoparticles were thermally stable at 800 ℃, whereas visible weight losses occurred on the 

TG curves of both the NaK eutectic and QSS electrolyte when the temperature was raised beyond 

the NaK eutectic melting point of 703 ℃. It implies that evaporation of molten NaK was the 

essential cause for the weight loss at high temperatures. Furthermore, the weight losses of the QSS 

electrolyte and NaK eutectic at the stage of the constant temperature mode were 4.29 % (with a 

weight loss rate of 1.29 mg min-1) and 6.51% (with a weight loss rate of 1.97 mg min-1), 

respectively. Both the less weight loss and the lower weight loss rate indicate that the 

volatilization of QSS electrolyte was less than that of the NaK eutectic at high temperatures. 
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Further, the vapor pressures of both the QSS electrolyte and molten NaK were measured to 

evaluate the energy of evaporation. Because both the QSS electrolyte and molten NaK should start 

to evaporate at and above 703 ℃, the vapor pressure measurement was carried out from an initial 

steady state at 700 ℃ to another steady state at higher temperatures in a pre-evacuated sealable 

tubular furnace with a relatively low pressure to diminish the influence (e.g. thermal expansion) of 

residual air. Fig. 3c shows the measured vapor pressures at different temperatures. As the 

temperature rose from 700 ℃ to 1100 ℃, the vapor pressure of the QSS electrolyte increased from 

3 kPa to 64 kPa, whereas that of the NaK eutectic from 2 kPa to 132 kPa. This difference is direct 

evidence that the QSS electrolyte is less volatile than the NaK eutectic. Assuming the molten salt 

vapor as an ideal gas, the energy of evaporation was derived according to the Clausius-Clapeyron 

equation without consideration of the residual air in the sealed furnace. The energy of evaporation 

for the QSS electrolyte was 92 kJ mol-1, higher than that of 74 kJ mol-1 for the NaK eutectic (Fig. 

S7). As discussed above, the higher value of energy of evaporation of the QSS electrolyte may be 

attributed to the YSZ nanoparticles not only forming a flexible network to physically retard 

evaporation, but also interacting strongly with, and hence withholding the salt ions, particularly 

the oxygen containing anions (e.g. O2- and CO3
2-) from escaping as a vapor.  

 

In order to study the interaction between YSZ nanopowders and molten NaK, we carried out 

high-temperature in situ studies on the QSS electrolyte. High-resolution neutron powder 

diffraction (HRND) spectra revealed the bulk-phase structure of the QSS electrolyte at 800 ℃ (Fig. 

S8). In comparison with the HRND spectra at room temperature, the vanished diffraction peaks of 

the NaK eutectic indicates the phase transition of the NaK eutectic from crystalline solid to liquid 

at 800 ℃. Furthermore, the well-retained diffraction peaks at 36.8°, 74.2°, 104.8° and 125.9° of 

tetragonal zirconia (t-ZrO2) indicate the state of YSZ nanoparticles in the QSS electrolyte at 800 ℃. 

These findings agree with the QSS electrolyte being a solid-liquid mixture of YSZ nanoparticles 

and molten NaK at 800 ℃. 

 

High-resolution Raman spectra further revealed the refined structure at the interface between YSZ 

nanoparticles and the liquid NaK eutectic in the QSS electrolyte at 800 ℃ (Fig. 3b). In detail, the 

characteristic peaks at 142 cm-1, 324 cm-1, and 594 cm-1 on the Raman spectrum of the QSS 

electrolyte correspond to t-ZrO2, and those at 169 cm-1, 180 cm-1, and 367 cm-1 belong to 

monoclinic zirconia (m-ZrO2).[33,34] In comparison, the Raman spectrum of pristine YSZ 

nanoparticles only showed the characteristic peaks of t-ZrO2, without any sign for m-ZrO2. It 

clearly indicates that part of t-ZrO2 had transformed to m-ZrO2, and this could have happened at 

the interface between YSZ nanoparticles and molten NaK. Such a phase transformation might be 

attributed to the loss of yttrium in zirconia lattice driven by the concentration gradient between 

YSZ nanoparticle and molten NaK. It is likely that yttria on the surface of YSZ nanoparticles 

became less stable and tends to diffuse into molten NaK. Consequently the YSZ phase 

transformed from tetragonal to monoclinic upon losing yttria. Moreover, more remarkable 

characteristic peaks of m-ZrO2 were shown by the Raman spectrum of the solidified QSS 

electrolyte at room temperature (Fig. S9). The room-temperature X-ray diffraction (XRD) pattern 

of the solidified QSS electrolyte (Fig. 3d) further confirmed the formation of m-ZrO2, showing 

diffraction peaks at 28.17° and 31.46° that correspond to the crystal planes of (-111) and (111) of 

m-ZrO2, respectively (JCPDS 37-1484). Additionally, the characteristic peaks of t-ZrO2 were 
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significantly stronger than those of m-ZrO2, indicating the phase of t-ZrO2 was still dominant in 

the solidified QSS electrolyte. 

 

A laboratory QSS-MIB was constructed in a vertical tubular furnace at 800 °C and studied for its 

cyclic charging-discharging behavior in the constant current mode (Fig. S10). The charging 

current density was 4 mA cm-2, but the discharging current density varied between 2, 1.5, 1 and 

0.5 mA cm-2 with a cutoff cell voltage of 0.3 V. The columbic efficiency (CE) remained above 90% 

(Fig. 4a) and the energy efficiency (EE) of the QSS-MIB increases from 52.1% to 61.2% (Fig. 4b) 

when the discharging current decreased from 2 to 0.5 mA cm-2. Fig. 4c further shows that CE 

remained above 90% when the utilization of hematite increased from 11.8% to 75%. As shown in 

Fig. S11, the EE value of QSS-MIB was 37.56% when the utilization of hematite reached 75%, 

thus we calculated that the output energy density of QSS-MIB was 380.3 Wh Kg-1. Fig. 4e shows 

that the cell voltage profile gradually decreased as the discharging current density increased from 

0.5 mA cm-2 to 2 mA cm-2, yet the specific capacity remained at ~1300 mAh g-1 based on the mass 

of iron on the negative electrode, close to the theoretical specific capacity of 1430 mAh g-1. 

Cycling charge/discharge results in Fig. 4f illustrates that both the CE and EE values of the 

QSS-MIB increased rapidly before the 10th charge/discharge cycle, and then in the following 

cycles remained steady above 90% and 50%, respectively, with the hematite utilization of 11.8%. 

Moreover, Fig. 4d shows that all the charge/discharge curves from the 20th to the 80th cycles are 

identical with approximately the same discharge specific capacity of ca. 1300 mAh g-1, suggesting 

a high stability of the QSS-MIB. After the 80th charge/discharge cycle, the continuous operation 

time of QSS-MIB reached 113 h whereas the weight loss of the whole battery with an initial 

weight of 200.28 g was merely 1.69 g. In comparison with the bi-phase electrolyte structured MIB 

in our previous work, most of the key performance parameters of QSS-MIB have been 

significantly improved, including a two orders of magnitude higher cycling stability and hematite 

utilization, and almost one time higher energy efficiency, as shown in Table S1. 

Fig. 5a shows the scanning electron microscopy (SEM) image of the solidified QSS electrolyte on 

the negative electrode after cycling charge/discharge. A distinctive 10 μm layer on the surface of 

the QSS electrolyte. Energy-dispersive X-ray (EDX) results further demonstrated the distribution 

of Fe, Zr, Na and K near the interface between the QSS electrolyte and the distinctive layer (Fig. 

S12). It showed that Fe was highly accumulated near the negative electrode, and well-confined in 

the distinctive layer, instead of dispersing in the whole QSS electrolyte. This was probably 

because of the low solubility of iron oxides in the NaK eutectic. Furthermore, the distinctive layer 

also contained high levels of Na and K, indicating that Fe-oxides on the surface of silver electrode 

would be surrounded by molten NaK at 800 ℃ and consequently the liquid-solid-solid 3PI would 

have formed between molten NaK, iron oxides and silver electrode during QSS-MIB operation. 

 

Cyclic voltammograms (CVs) were recorded to compare the behavior of the negative electrode in 

the QSS electrolyte at 800 ℃, and a pristine silver electrode but was not loaded iron oxide. The 

results are presented in Fig. 5b. The CV of the negative electrode showed a pair of current peaks 

in the range from ~0.35 to ~1.30 V, corresponding to the redox conversion between Fe (0) and Fe 

(III) in the iron oxide electrode. Moreover, the asymmetric CV of the negative electrode differed 

from that of the iron-oxygen battery with molten lithium carbonate (Li2CO3) in which the 

electrochemical deposition-dissolution mechanism of iron was responsible charging-discharging 
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of the negative electrode. Thus, a different redox conversion mechanism should have taken place 

in the QSS-MIB. Based on SEM and EDX analyses, the features on the CV of the negative 

electrode may be attributed to solid state redox conversion between Fe (0) and Fe (III) proceeded 

via a liquid-solid-solid 3PI mechanism on the negative electrode (Fig. S13). 

 

To determine the active reduction and oxidation products in the QSS-MIB, the composition of the 

QSS electrolyte on the negative electrode was investigated after charging and discharging, 

respectively. As it can be seen in Fig. S14, the XRD pattern after charging the battery presents a 

peak at 44.75° which agrees that for the (1 1 0) crystal plane in the cubic Fe (0) phase (JCPDS 

06-0696). In fact, the detection of Fe (0) was expected from reduction (charging) of Fe2O3 on the 

negative electrode. However, the characteristic diffraction peak of Fe metal vanished in the XRD 

spectrum after discharging the battery. The diffraction peaks at 28.44°, 31.56° and 38.21° 

correspond to the crystal planes of (1 0 6), (1 0 7), and (2 0 4) in the hexagonal phase of K2Fe22O34, 

and those at 20.77°, 26.11° and 29.38° should belong to the crystal planes of (0 1 1), (1 1 1) and (1 

2 0) in the orthorhombic phase of NaFeO2, according JCPDS cards 31-1034 and 13-0521, 

respectively. It suggests that K2Fe22O34 and NaFeO2 are the oxidation (discharging) products on 

the negative electrode of the QSS-MIB. 

 

Fig. 5c shows the Mössbauer spectra of the solidified QSS on the surface of the negative electrode 

at room temperature. Specific values of the isomeric shift (IS), quadrupole splitting (QS), and 

magnetic hyperfine field (HF) are displayed in Table S2. According to the fitting results, the 

Mössbauer spectrum of the composition on the charged negative electrode revealed three magnetic 

phases and a quadrupole doublet phase.[35,36] The magnetic phase with the IS value of zero and 

MF value of 32.78 corresponds to Fe (0), as the reduction (charging) product. The other couple of 

magnetic phases correspond to the spinel-type of potassium ferric (K2Fe22O34), whilst the 

quadrupole doublet phase with the IS value of 0.35 and QS value of 0.53 can be related to sodium 

ferrate (NaFeO2), both of them are the expected oxidation (discharging) products. After 

discharging, the magnetic phase of Fe (0) disappeared, accompanied by the increasing appearance 

of the magnetic phases of spinel-type potassium ferrite, suggesting the Fe (0) phase was oxidized 

to K2Fe22O34 and NaFeO2. The Fe K-edge X-ray absorption fine structure (XAFS) results firmly 

verified the redox conversion between Fe (0) and Fe (III) in K2Fe22O34 and NaFeO2 (Fig. 

5d).[37,38] The obvious pre-edge peak in the normalized X-ray absorption near-edge structure 

(XANES) spectrum of the charged sample strongly suggests the existence of metallic Fe, and 

correspondingly, the Fourier transform of EXAFS (Fig. 5e) of the charged sample gave the Fe-Fe 

bond distance of ~2.17 nm that is similar to that of the Fe-Fe bond in iron foil. By contrast, the 

normalized XANES spectrum of the discharged sample presents a far higher proportion of Fe (III) 

state, suggesting the oxidation conversion from Fe (0) to Fe (III) when discharging the QSS-MIB. 

The reaction mechanism of QSS-MIB can be summarized as following: 

Positive electrode: 3/4O2 + 3e- ↔ 3/2O2
- 

Negative electrode: Fe + 2O2- ↔ FeO2
- + 3e - 

 

In closing, we note that one long-standing challenge of molten salt metal air battery is to avert the 

volatility and fluidity of high-temperature molten salt electrolytes for improving their safety and 

stability. The QSS electrolyte constructed from molten salts and solid oxide nanopowders offers 



 

8 
 

the possibility to suppress the evaporation and flow of molten salts, via a strong interaction at the 

interface between solid oxide nanopowders and molten salts. The QSS-MIB we have presented 

here offers excellent cycling charge-discharge abilities with high columbic and energy efficiencies 

in non-lithium molten salts, and a liquid-solid-solid 3PI related electrochemical redox reaction that 

differs from the reversible deposition-dissolution mechanism in lithium-contained molten salts. 

Our encouraging results may boost further development of low-cost and high-performance molten 

salt metal air batteries with promising stability and safety by further and smart engineering of the 

quasi-solid-oxide electrolyte materials. 
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Figures and captions 

 

 

Figure 1. Schematic illustration of QSS-MIB. 
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Figure 2. The morphology of QSS electrolyte. (a) a TEM image of the QSS electrolyte, (b, c, d) 

HR-TEM images showing the interfacial region between the NaK shell and YSZ nanoparticle at 

different magnifications, (e, f, g, h) EDS mappings of the QSS electrolyte. 
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Figure 3. the physical properties of QSS electrolyte. (a) the TG curves of QSS electrolyte, NaK 

eutectic, and YSZ nanopowders. (b) Raman spectra of QSS electrolyte, NaK eutectic, and YSZ 

nanopowders at 800 ℃. (c) the measured evaporation pressure of QSS electrolyte and NaK 

eutectic at different temperatures. (d) XRD spectra of QSS electrolyte, NaK eutectic, and YSZ 

nanopowders, respectively. 
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Figure 4. The performances of QSS-MIB. (a) the Columbic efficiencies of QSS-MIB at different 

discharge current densities, (b) the energy efficiencies of QSS-MIB at different discharge current 

densities, (c) the Columbic efficiencies of QSS-MIB at different hematite utilizations, (d) the 

charge-discharge curves of QSS-MIB in the cycle of 10th (red), 20th (blue), 30th (green), 40th 

(violet), 50th (gray), 60th (brown), 70th (orange), respectively, (e) the charge-discharge curves of 

QSS-MIB with the discharge current density of 0.5 (blue), 1 (red), 1.5 (green) and 2 (orange) mA 

cm-2, respectively, (f) long-term cycling performance at 800 ℃ for 70 cycles. 
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Figure 5. Investigation on the Fe2O3 negative electrode in QSS-MIB. (a) An SEM image of the 

solidified QSS electrolyte, (b) CVs of the silver negative electrode without (dark) and with the 

Fe2O3 loading in the QSS electrolyte at 800 ℃, with the scan rate of 10 mV s-1 (orange), 20 mV s-1 

(green), 30 mV s-1 (red), 40 mV s-1 (blue), 50 mV s-1 (brown), respectively, (c) Mössbauer spectra, 

(d) XAFS, (e) FT-XAFS of the solidified QSS electrolyte of the charged and discharged natures, 

respectively. 
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Supplementary information 

Quasi-solid-state electrolyte for rechargeable 

high-temperature molten salt iron-air battery 

 

Experimental section 

Battery fabrication. The silver wires (99.99%, Jinchang Alloy Co. Ltd., Shanghai, China) with 

the diameter of 1 mm was coiled and immerged into the room-temperature saturated iron 

trichloride aqueous solution for absorbing iron ions, and then treated at 200 ℃ for dehydration and 

800 ℃ for calcination, respectively. The preparation of negative electrode was completed after 

several times of absorption, dehydration and calcination, until the deposition weight reached 

~0.15g. The iron trichloride was purchased from Aladdin reagent (Shanghai) Co., Ltd., China. The 

YSZ plate (8 mol%) with the thickness of 0.8 mm was prepared by direct tablet compressing 8 

mol% YSZ powders (Tianrao Industrial Co. Ltd., Qingdao, China) after annealing treatment at 

800 ℃ for 3 h and at 1400 ℃ for 2 h, respectively. The silver positive electrode was fabricated by 

coating conductive silver paste (Shanghai research institute of synthetic resins, Shanghai, China) 

on one side of YSZ plate, and silver wires with the diameter of 1 mm were stuck on silver positive 

electrode after drying at 200 ℃. To construct a typical bi-phase molten salt iron air battery, the 

as-prepared negative electrode was first placed in the bottom of an alumina crucible which were 

then filled with the Na2CO3 (15 g), K2CO3 (15 g) and YSZ nanopowders (30 g) mixture. The 

sodium carbonate was purchased from Tianjin Zhiyuan Co., Ltd., China, the potassium carbonate 

were purchased from Tianjin Bodi Co., Ltd., China. The whole crucible was placed in an oven 

(made by Hefei Kejing materials technology Co., Ltd., China) which provides a constant high 

temperature at 800 ℃, and the as-prepared positive electrode was placed on the quasi-solid-state 

electrolyte with a close contact. 

Electrochemical experiments. The battery with the area of ~5 cm2 of negative silver electrode 

was investigated in the mode of recycling constant current charge at 20 mA within 30 min and 

constant current discharge at 0.5, 1, 1.5 and 2 mA/cm2, respectively, with a cutoff voltage of 0.5 V. 

The columbic efficiency was evaluated by the ratio of charge/discharge electric quantities, which 

were calculated by integrating the charge/discharge current per second. The energy efficiency was 

evaluated by the ratio of charge/discharge energies, which were calculated by integrating the 

product of charge/discharge current and voltage per second. The output specific energy was 

calculated by the product of hematite utilization, energy efficiency and the theoretical energy 

capacity of iron-Air battery (Gibbs free energy change for 2Fe +1.5O2 = Fe2O3, 1.35 kWh kg-1 at 

800 ℃). All the electrochemical experiments were performed on LANHE CT2001A battery test 

system. Cyclic voltammetry curves in the range from 0 to 2 V with the scanning rate of 20 mV s-1, 

and electrochemical impedance spectra in the range from 0.1 Hz to 10000 Hz were collected by 

Princeton 4000+ electrochemical workstation. All the experiments were executed in air at 800 ℃. 

Materials characterization. Aberration-corrected high-angle annular dark field-STEM and 

STEM-EDX images were obtained on a JEM-ARM200F transmission electron microscopy, which 

incorporated with double spherical aberration correctors. The SEM and EDX images were 

obtained on a Merlin Compact scanning electron microscopy. The Raman spectroscopy 
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measurements were conducted at 800℃ using an HORRIBA Confocal Raman microscope with the 

532 nm laser excitation. The neutron powder diffraction experiments were carried out at 800 ℃ 

using the high resolution neutron powder diffractometer (HRND) at China Mianyang Research 

Reactor (CMRR) with the wavelength of λ=1.8846 Å, all the samples were sealed in stainless steel 

tubes. XRD patterns were obtained on a Bruker D8 Advanced diffractometer using CuKa radiation 

(l=1.5418 a) with a scanning rate of 2° min-1 when the voltage and current was 40 kV and 40 mA, 

respectively. The TG curves were obtained on a NETZSCH STA 449F3, with a constant rising 

temperature mode of 10 ℃ min-1 and a constant temperature mode. The evaporation experiments 

were carried out in a vacuum tubular furnace (made by Hefei Kejing materials technology Co., 

Ltd., China). The samples were vacuumized in the vacuum tubular furnace and the pressure was 

recorded at different temperatures when the value was stable. Mossbauer spectra were measured 

using a constant acceleration transmission mode with a 57Co/Rh source at room temperature. The 

velocity was calibrated with a 25 mm a-Fe foil, and the isomer shift was relative to the center of 

a-Fe at room temperature. All the Mössbauer data have computer-fitted via MossWinn, assuming 

several hyperfine components made of absorption peaks with Lorentzian line shapes. Fe K-edge 

X-ray absorption spectroscopy data were collected at beamline XAFCA of the Singapore 

Synchrotron Light Source. Data were recorded in transmission mode. Acquired XAFS data were 

processed with the ATHENA program and analysed in the ARTEMIS program integrated with 

Demeter software package, and the theoretical phase and amplitude functions were calculated 

using FEFF 9.0. All the EXAFS oscillations were extracted from the normalized XAS spectra by 

subtracting the atomic background using a cubic spline fit to k3-weighted data, where k is the 

photoelectron wave number. The χ(k) functions were then Fourier transformed into R-space. 

Theoretical viscosity calculation. The theoretical viscosity of molten NaK via Arrhenius 

viscosity formula[1]: 

ln 𝜂 =  ∑ 𝑥𝑖
𝑛
𝑖=1 ln 𝜂𝑖                     (equ 1) 

Where η is the viscosity of molten eutectic, xi and ηi is the mole fraction and viscosity of i. The 

relation between viscosity and temperature of Na2CO3 and K2CO3 are shown in equ 2 and equ 

3[2]: 

𝜂 = 3.832 ∗ 10−5 ∗ 𝑒
26260

𝑅𝑇                  (equ 2) 

𝜂 = 1.161 ∗ 10−5 ∗ 𝑒
29487

𝑅𝑇                  (equ 3) 

Where R is molar gas constant, 8.314 J/(mol·K), T is temperature, K. 

When the mass ratio of Na2CO3 and K2CO3 is 1:1, the mole fraction of Na2CO3 is 0.57 and 0.43 

for K2CO3. We can obtain the relationship between viscosity and temperature of NaK molten salt 

is shown in equ 4: 

𝜂 = 2.293 ∗ 10−5 ∗ 𝑒
27647

𝑅𝑇                   (equ 4) 

[1] REPORT ON THE HELIUM SYSTEM EXPERIMENT AT OAK RIDGE, TENNESSEE 

Authors:Newson, H WPublication Date:1956-10-31Research Org.:Brookhaven National Lab., 

Upton, N.Y.OSTI Identifier:4369134 Report Number(s):M-4461NSA. 

[2] G. J. Janz, R. P. T. Tomkins, Physical properties data compilations relevant to energy storage. 

IV. Molton salts: data on additional single and multi-component salt systems, NASA STI/Recon 

Technical Report N. 80., Washington, 1981, pp. 131-124.  



 

18 
 

 

Figure S1. The viscosity of molten NaK at different temperatures. 
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Figure S2. The TEM image of YSZ nanopowders. 
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Figure S3. The photograph of molten NaK on YSZ layer (a) and the wetting angle between YSZ 

layer and molten NaK (b). 
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Figure S4. The digital pictures of QSS electrolyte after extruded in different shapes at 850 ℃. 
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Figure S5. The top view of pure NaK molten salt and NaK-YSZ mixtures with different mass 

ratio at 800 °C, top view and right view at room temperature, molten NaK (a, b, c), YSZ:NaK 1:5 

(d, e, f), YSZ:NaK 2:3 (g, h, i), YSZ:NaK 1:1 (j, k, l), and YSZ:NaK 3:2 (m, n, o). 
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Figure S6. (a) EIS analysis of molten salt (MS) and QSS electrolyte, respectively.  
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Figure S7. The illustration of the energy of evaporation for the QSS electrolyte and NaK eutectic, 

respectively. 
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Figure S8. HRND spectra of QSS (blue), NaK (red) eutectic and YSZ nanopowders (dark) at 

room temperature and 800 ℃, respectively. 
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Figure S9. Room-temperature Raman spectra of QSS electrolyte, YSZ powders and NaK eutectic, 

respectively. 
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Figure S10. Schematic illustration of the testing system for QSS-MIB, showing (1) the 

Fe2O3-coated Ag wire negative electrode, (2) positive electrode (Ag wire), (3) alumina crucible, 

(4) QSS electrolyte, (5) YSZ sheet. 
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Figure S11. The energy efficiency of QSS-MIB with different hematite utilizations. 
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Figure S12. The distribution of Fe, Zr, Na and K near the interface between the QSS electrolyte 

and the distinctive layer. 
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Figure S13. The illustration of 3PI on the negative electrode in QSS-MIB. 
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Figure S14. Room-temperature XRD spectra of solidified QSS electrolyte of the charged and 

discharged natures, respectively. 
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Table S1 the comparison of battery 

performance parameters. 

Bi-phase electrolyte 

structured MIB1 

QSS-MIB in this 

work 

energy efficiency ~37%, highest ~61%, highest 

Fe0 utility ~0.35% 75% 

cycle life ~3.5h ~113h 

1. C. Peng, C. Z. Guan, J. Lin, S. Y. Zhang, H. L. Bao, Y. Wang, G. P. Xiao, G. Z. Chen and J. Q. 

Wang, Chemsuschem, 2018, 11, 1880-1886. 
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Table S2. Mössbauer data of the solidified QSS electrolyte after charge and discharge, respectively. 

 

 

 

 Magnetic(1) Spinel-A site K2Fe22O34 Magnetic(1) Spinel-B site K2Fe22O34 Magnetic(3) Fe(0) Fe(III) Doublet (1) NaFeO2 

 IS QS LW MF Area IS QS LW MF Area IS QS LW MF Area IS QS LW MF Area 

 (mm/s) (T) (%) (mm/s) (T) (%) (mm/s) (T) (%) (mm/s) (T) (%) 

Charge 0.64  0.62 45.91 9.24 0.27  0.36 49.01 7.25 0.00  0.27 32.78 26.40 0.35 0.53 0.42  57.11 

Discharge 0.35  1.06 44.74 21.48 0.32  0.57 50.15 42.05      0.34 0.60 0.44  36.47 


